Search results for "Projective curve"

showing 5 items of 5 documents

Unirationality of Hurwitz spaces of coverings of degree <= 5

2011

Let $Y$ be a smooth, projective curve of genus $g\geq 1$ over the complex numbers. Let $H^0_{d,A}(Y)$ be the Hurwitz space which parametrizes coverings $p:X \to Y$ of degree $d$, simply branched in $n=2e$ points, with monodromy group equal to $S_d$, and $det(p_{*}O_X/O_Y)$ isomorphic to a fixed line bundle $A^{-1}$ of degree $-e$. We prove that, when $d=3, 4$ or $5$ and $n$ is sufficiently large (precise bounds are given), these Hurwitz spaces are unirational. If in addition $(e,2)=1$ (when $d=3$), $(e,6)=1$ (when $d=4$) and $(e,10)=1$ (when $d=5$), then these Hurwitz spaces are rational.

Projective curveHurwitz spaceDegree (graph theory)Group (mathematics)General MathematicsSpace (mathematics)unirationalitycoveringvector bundles.CombinatoricsMathematics - Algebraic GeometryMonodromyLine bundle14H10 (Primary) 14H30 (Secondary)Genus (mathematics)Settore MAT/03 - GeometriaComplex numberMathematics
researchProduct

Numerical bounds for semi-stable families of curves or of certain higher-dimensional manifolds

2005

Given an open subset U U of a projective curve Y Y and a smooth family f : V → U f:V\to U of curves, with semi-stable reduction over Y Y , we show that for a subvariation V \mathbb {V} of Hodge structures of R 1 f ∗ C V R^1f_*\mathbb {C}_V with rank ( V ) &gt; 2 \textrm {rank} (\mathbb {V})&gt;2 the Arakelov inequality must be strict. For families of n n -folds we prove a similar result under the assumption that the ( n , 0 ) (n,0) component of the Higgs bundle of V \mathbb {V} defines a birational map.

CombinatoricsProjective curveAlgebra and Number TheoryReduction (recursion theory)Hodge bundleComponent (group theory)Geometry and TopologyRank (differential topology)MathematicsHiggs bundleJournal of Algebraic Geometry
researchProduct

On the irreducibility of Hurwitz spaces of coverings with an arbitrary number of special points

2013

In this paper we study Hurwitz spaces of coverings of Y with an arbitrary number of special points and with monodromy group a Weyl group of type D_d, where Y is a smooth, complex projective curve. We give conditions for which these spaces are irreducible.

Hurwitz spaces Weyl groups special points monodromy braid movesProjective curvePure mathematicsWeyl groupHurwitz quaternionGeneral MathematicsType (model theory)Algebrasymbols.namesakeMonodromyHurwitz's automorphisms theoremsymbolsIrreducibilitySettore MAT/03 - GeometriaMathematics::Representation TheoryMathematicsFilomat
researchProduct

MR 3215343 Reviewed Pirola G.P., Rizzi C. and Schlesinger E. A new curve algebraically but not rationally uniformized by radicals. Asian J. Math., 18…

2014

A smooth projective complex curve C is called rationally uniformized by radicals if there exists a covering map C \rightarrow P^1 with solvable Galois group. C is called algebraically uniformized by radicals if there exists a finite covering C^{\prime} \rightarrow C with C^{\prime} rationally uniformized by radicals. Abramovich and Harris posed the following problem in [D. Abramovich and J. Harris, Abelian varieties and curves in $W_{d}(C)$, Compositio Math., 78 (1991), pp. 227–-238]. \vspace{1ex} Statement S(d, h, g): \textit{Suppose C^{\prime} \rightarrow C is a nonconstant map of smooth curves with C of genus g. If C^{\prime} admits a map of degree d or less to a curve of genus h or less…

Monodromy groups Galois groups projective curves.Settore MAT/03 - Geometria
researchProduct

A note on coverings with special fibres and monodromy group $ S_{d}$

2012

We consider branched coverings of degree over with monodromy group , points of simple branching, special points and fixed branching data at the special points, where is a smooth connected complex projective curve of genus , and , are integers with . We prove that the corresponding Hurwitz spaces are irreducible if .

CombinatoricsProjective curveBranching (linguistics)Mathematics::Algebraic GeometryMonodromyGeneral MathematicsHigh Energy Physics::ExperimentHurwitz spaces special fibres branched coverings monodromy braid moves.Settore MAT/03 - GeometriaMathematicsIzvestiya: Mathematics
researchProduct